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Abstract—Legibility is a crucial concept in terms of efficiency
and trust in assistive robotics and human-robot collaboration,
where the robot communicates its objectives through its ac-
tions in an understandable and predictable manner. Traditional
motion planning techniques encounter various issues, including
high computational latency, ambiguous objectives, and intensive
tuning efforts. To overcome these challenges, we propose a
universal planning architecture for learned legible behaviors us-
ing reinforcement learning and imitation learning. Furthermore,
we introduce a novel planning model that considers human’s
viewpoint to generate adaptive motions that more effectively
express intents. The effectiveness of our frameworks is validated
through goal-reaching manipulation tasks conducted using the
xArm6 robot in both simulated environments and real-world
settings. Human-based evaluations indicate that our trained agent
outperforms expert demonstrations by 15%. Our implementation
can be accessed at https://github.com/BernieChiu557/xarm6-RL.

Index Terms—reinforcement learning, imitation learning, leg-
ible motion planning.

I. INTRODUCTION

In the field of robotics, the concept of legible motion
planning emerges as a cornerstone for enhancing human-
robot interaction and shared autonomy [1]–[3]. Legible motion
planning refers to the design and implementation of robotic
movements that are easily interpretable by human observers,
allowing for intuitive anticipation of the robot’s future ac-
tions. This aspect of robotics is critical in applications where
robots and humans work in close proximity, ranging from
collaborative manufacturing environments to assistive robots
in healthcare settings. The primary goal of legible motion
planning is to foster trust and cooperation between humans
and robots, ensuring that robotic actions are not only efficient
but also predictable and understandable to humans.

The significance of making robotic actions easily inter-
pretable to humans has been a pivotal advancement in robotics.
This focus on legibility has led to the development of frame-
works for evaluating how predictable and understandable a
robot’s movements are to people, which is critical for effective
human-robot collaboration. Building on these foundational
ideas, the research community has explored various methods
to enhance the clarity of robot motions. These methods range
from altering the paths robots take, adjusting the timing of
their movements, to introducing more pronounced gestures

that clearly communicate their intended actions. Such efforts
aim to ensure that robots can operate in close proximity to
humans, not only performing tasks efficiently but also in a
manner that humans can easily understand and predict, thus
facilitating smoother interactions and cooperation between
humans and robots [1].

While advancements in robot legibility have greatly en-
hanced human-robot interaction, certain limitations persist that
challenge the effectiveness and application of these concepts.
One such limitation is the complexity of designing univer-
sally comprehensible cues that accurately convey a robot’s
intentions across diverse human populations and settings.
The effectiveness of modified trajectories, timing adjustments,
and exaggerated movements in signaling intentions can vary
significantly based on the environment and the individual’s
interpretation. Additionally, ensuring these legibility cues do
not mislead or confuse users remains a challenge, especially
as robots become more prevalent in shared and public spaces.
The quest for effective communication between robots and
humans, thus, necessitates continuous refinement and testing
of legibility strategies to address these concerns [1], [4].

On the other hand, learning-based approaches become in-
creasingly popular in robotics planning and control since they
offer a variety of advantages over traditional methods in terms
of scalability, robustness, and efficiency. Firstly, deep learning
models, as universal approximators, can represent complex
systems and behaviors, which enables vision-based input or
even end-to-end design [4]. Next, planning via neural network
inference exhibits negligible latency [5], especially on GPUs,
compared to computationally intensive optimization or search-
based methods.

In the pursuit of legible motion planning, two prominent
learning-based methods have emerged: reinforcement learning
(RL) and imitation learning (IL). Reinforcement learning,
characterized by a trial-and-error approach, allows robots to
learn optimal actions through interactions with their environ-
ment, guided by a reward system that incentivizes legible
behaviors. On the other hand, imitation learning focuses
on teaching robots by example, where the machine learns
legible motions by mimicking human demonstrations. Both
methods offer unique advantages and challenges in the quest
for legibility, with RL providing the flexibility of autonomous



Fig. 1: System overview of our proposed learning-based legible motion planning frameworks. The policy which can be trained using imitation learning or
reinforcement learning generates legible motions, enabling human collaborators to clearly understand the intent of the robot’s movements. At each time step,
the policy receives input including the state of the robot, the goal, the potential distraction that could confuse human collaborators, and the viewpoint of the
human collaborators and predicts an action in the form of joint torques for the robot to execute. Since our focus is on the planning side, all observations
except the robot state are specified manually. In real world, these observations can come from a perception module to enable full shared autonomy.

adaptation and IL offering the intuitiveness of human-like
motion patterns.

Both RL and IL offer unique approaches to enhancing legi-
ble motion planning, yet the influence of observer viewpoints
has been largely overlooked in these strategies. This limitation
impacts human-robot collaboration as a robot’s intent is often
only clear from specific angles. Our research aims to integrate
viewpoint conditioning into these learning-based algorithms to
better align robotic behavior with human perceptions.

RL enables robots to autonomously identify optimal be-
haviors through rewards and penalties, ideal for environments
lacking explicit behavior models and requiring adaptability. In
contrast, IL uses human demonstrations to teach robots, align-
ing robotic actions with human norms and expectations, and
is effective in contexts where human-like motion is essential.
By separately investigating RL and IL, we gain insights into
each method’s capabilities and constraints in promoting legible
motion. This comparative analysis helps identify the most
effective techniques for various scenarios, enhancing future
research and practical applications.

This paper delves into legible motion planning from the
perspective of learning-based methods, specifically focusing
on the promising applications of RL and IL (Fig. 1). We dis-
cuss methodologies for achieving legibility in robotic motions
through each learning paradigm and evaluate the advantages of
these approaches compared to previous work. Moreover, our
novel idea of incorporating the user viewpoint aims to enhance
the ways in which machines communicate their intentions to
humans, thereby improving the interaction and cooperation
between human and robotic agents.

Our main contributions include:

• A universal planning architecture for learned legibility
using reinforcement learning and imitation learning.

• A novel legible motion planning model that considers hu-
man’s viewpoint for effective human-robot collaboration.

• Evaluations with humans demonstrating the effectiveness
of the proposed frameworks in real-world settings.

II. RELATED WORK

A. Legible Motion Planning (LMP)

The field of legible motion planning (LMP) emphasizes
refining robots’ movements to enhance predictability and
understandability, as pioneered by Dragan et al. [1]. They
distinguished legibility, the ease of inferring a robot’s goal
from early trajectory cues, from predictability, which antic-
ipates the robot’s path given its goal. This work underlined
the challenges of applying these concepts universally across
varied tasks and user groups. A follow-up on these ideas was
to take into account the viewpoint of observers in legibility.
Nikolaidis et al. [3] proposed computing legibility by first
projecting trajectory and any goals onto the plane aligned
with the observers’ point of view and then Dragan legibility
is computed in the resulting space. This allows the robot to
take into account the human’s perspective and also allows it
to account for occlusion from the perspective of the observer.
Simplifying complex trajectories, Zhao et al. [6] demonstrated
that straightforward paths often outperform in predictability,
indicating the task context’s significant role in legibility strate-
gies. The literature explores various approaches to optimize
robot motion for clear goal communication, from heuristic
methods enhancing intent clarity to reinforcement learning
techniques adapting based on user feedback. These studies
underscore the critical balance between making robot actions
both predictable and legible.

B. From Reinforcement Learning to LMP

Reinforcement learning has been extensively explored for
the motion planning of autonomous systems, with the incor-
poration of legibility achievable through engineered rewards
or direct human feedback. Zhao et al. [7] utilize Deep Re-
inforcement Learning (DRL) to formulate a policy for robot
motion, complemented by a Seq2Seq predictor to evaluate the
legibility of said motion. This data-centric approach obviates
the need for real human data by employing joint learning
techniques. Nonetheless, this method might not accurately
capture human anticipation of the robot’s movements. Busch et
al. [2] employ model-free RL coupled with a unique reward
mechanism that integrates the joint execution time of both



Fig. 2: Simulation setup for RL with the xArm robot. We use Mujoco as
the physics engine and interface it through Gym for learning algorithms. The
blue, green and red dots represent the positions of the end effector, goal and
distraction, respectively. In human evaluation, we create videos of the same
setup with the side and the top view.

humans and robots. However, this methodology necessitates a
specialized setup, potentially costly or inaccessible for various
tasks across different domains.

C. From Imitation Learning to LMP

Imitation learning is a widely adopted approach for rep-
resenting complex behaviors that are best acquired through
expert demonstrations. Recent research by Wallkotter et al. [8]
tackles this challenge by focusing on learning an observation
model rather than the policy itself to devise motion plans.
The observation model learns user preferences from labeled
trajectories, enabling generalization, and subsequently, motion
plans are sampled and passed to the observation model for
legibility assessment. Lamb et al. [9] address a similar issue
by introducing a bio-inspired behavioral dynamic model for
cooperative pick-and-place behaviors. This model, based on
low-dimensional dynamical movement primitives and nonlin-
ear action selection functions, was effectively implemented as
an artificial agent control architecture to produce human-like
behavior during interactions with agents. The commonality
among these approaches lies in learning a policy from data
and utilizing it to generate legible behavior. This methodology
is advantageous as it allows the learning of crucial aspects of
legibility directly from the observer, potentially yielding more
accurate results than manually crafting such a policy.

III. TECHNICAL APPROACHES

We propose a universal learning-based legible motion plan-
ning architecture which is shared across both RL and IL
setups, with the difference being the policy learning pipeline
(Fig. 1). We focus on goal-reaching manipulation tasks where
the robot is required to reach one out of two objects, referred
as goal and distraction. To achieve legibility, it is necessary for
the robot to move in a way that humans can easily understand
and predict which object it wants to reach. Additionally, the

Fig. 3: Toy experimental setup for testing IL model with the xArm robot. The
setup shows a reaching task towards the object as goal while legibly avoid the
red object as distraction. The model also accommodate to different viewpoint
condition as we have the same set up with the top and the side view in human
evaluation.

robot’s actions adjust based on the human’s perspective of the
task environment, such as observing from a top or side view.

A. Reinforcement Learning-Based Approach

1) Simulation Setup: We developed a simulation of our
xArm6 robot based on [10], using Mujoco [11] as the physics
engine backend. Furthermore, we wrapped the simulation
using OpenAI Gym [12] as a RL environment. Fig. 2 illustrates
the simulation setup. The environment provides the robot
configurations at each update, and the agent can control the
torque applied at all six motors that correspond to each joint
on the xArm. Noted that while we are using joint control in
our simulation, lots of benchmark goal-reaching environments
use end effector control (such as the Fetch environments in
Gymnasium-Robotics). We found that since xArm6 has only 6
degrees of freedom, its joint space trajectory with end effector
control is much more unstable compared to robots with higher
degree of freedom, making RL training a lot harder (see our
Phase 1 report).

2) Proposed Model and Algorithm: We represent the RL
policy using a multi-layer perceptron (MLP) network with two
layers, each consisting of 128 neurons. The simulation envi-
ronment provides information about the robot configurations
such as joint angles, joint velocities and end-effector/gripper
pose. We randomly sample goal, distraction positions and
viewpoint (top view or side view). These become observations
for the RL agent to generate actions in the form of joint
torques. In RL, the reward is key in producing required behav-
iors and needs proper hyper-parameter tuning. Our legibility
reward is defined as follows

r = −α1dgoal + α2g(ddistract, β1)− α3erot + α4g(z, β2). (1)

g(x, y) = −1 if x ≤ y, otherwise 0. (2)



Hyper-parameter Value
Reward

α1 6.0
α2 3.0
α3 0.5
α4 1.0
β1 0.1
β2 0.0

SAC
buffer_size 1000000
batch_size 256

gamma 0.95
learning_rate 0.003

MLP [256, 256]

TABLE I: Hyper-parameters for reinforcement learning.

Hyper-parameter Value
input Layer neurons 19.0

hidden Layer neurons 40.0
no. of Hidden layers 2.0
output Layer neurons 6.0

activation function tanh
no. of Epochs 1000

batch size 1708
learning rate 0.001

TABLE II: Hyper-parameters for imitation learning.

where dgoal and ddistract are the Euclidean distances from the
gripper to the goal and distraction positions; erot is the absolute
rotation error between the gripper’s and goal’s poses. The first
term encourages the robot to reach the goal; the second term
encourages the robot to stay away from the distraction region
of radius β1; the third term encourages the robot to fix it
gripper orientation for consistency; the last term encourages
the robot to move above the table at least by β2 m. This
reward is computed using projected (vertical or horizontal)
2D coordinates given the side or top viewpoint (illustrated in
Fig. 2 and 3). The task is considered successful when the robot
manages to arrive at the goal within a small tolerance.

We then utilize the soft actor-critic algorithm (SAC) [13] to
train the RL policy based on observation, action, and reward
data. Our choice was based on SAC’s effectiveness as an
off-policy algorithm that seeks to find a balance between
maximizing expected return and entropy, thereby enhancing
the policy’s robustness. This connection is closely related to
the trade-off between exploration and exploitation: By raising
entropy, we promote greater exploration, which could acceler-
ate the learning process. Moreover, it serves to avoid the policy
from prematurely settling on suboptimal local solutions. The
hyper-parameters for the reward function and SAC algorithm
are shown in Table I.

B. Imitation Learning-Based Approach

1) Expert Demonstrations: In its simplest form, imitation
learning, also known as behavior cloning, involves physically
manipulating the robot to generate the dataset. The robot is
manually operated in a way considered legible, and these
observation-action pairs are recorded as expert demonstrations.
These movements’ trajectories are then saved based on the

Fig. 4: Imitation learning detailed pipeline. We represent the IL policy using
a multi-layer perceptron (MLP) network. It receives the state of the robot
as input and output a prediction of the next state in order to achieve legible
motion. The model operates in joint space, hence we need to use forward
kinematics to transform it to end effector position for robot controller.

robot’s joint states. This setup, depicted in Fig. 3, mirrors the
setup for RL. For straightforward tasks like reaching a goal
object amidst distractions, past attempts at imitation learning
suggest that a few dozen trajectories could suffice. To balance
accuracy with cost-effectiveness in gathering demonstrations,
we opted for 30 trajectories as a starting point for our pilot
study. In this phase, we conducted 30 expert demonstrations
each for two view points top and side ways, wherein the
robot was guided manually towards the target object, posi-
tioned 50 cm away, to demonstrate the desired motion. While
recording joint state trajectories the position of distraction and
goal were varied widely to cover the area in front of the robot.

2) Proposed Model and Algorithm: We represent the IL
policy using a multi-layer perceptron (MLP) network with
three hidden layers (40 neurons for each), and tanh activation
function. The input to the policy includes goal and distraction
positions, robot state and viewpoint. Here, the state comprises
of a 6-dimensional vector containing joint angles, each corre-
sponding to a joint on the xArm6. The model then predicts
the subsequent state of the robot and feeds it to a forward
kinematics block, which furnishes an end-effector position to
the position controllers of the robot. This process is illustrated
in Fig. 4. We conducted supervised learning on the expert
data to obtain a mapping from observation to action. Hyper-
parameters for imitation learning are shown in Fig. II.

The data collected from the xArm robot is sampled at 250
Hz. In our post-processing routine, we downsample these tra-
jectories by a factor of 20. This step is pivotal for the efficiency
of our network in imitation learning contexts, where error
propagation through consecutive time steps can significantly
degrade performance. By reducing the number of predictions
the model needs to make for each trajectory, we enhance the
success rates during task execution, a finding that is substan-
tiated by our research. Given our requirement for the model
to predict a trajectory’s next state based solely on the current
state—without leveraging a history of previous states—we opt
not to utilize Long Short-Term Memory (LSTM) networks.
This choice aligns with our objective to minimize dependency
on sequential past data, ensuring our model’s focus remains
on predicting future states from immediate, singular inputs.



Fig. 5: Learning progress of the reinforcement learning policy across 3 differ-
ent seeds. Top, the cumulative rewards increased consistently and converged
quickly to around -50 at the end. Bottom, the success rates reached almost
100% after 200K iterations.

IV. RESULTS AND DISCUSSION

A. Policy Training Results

1) Reinforcement Learning: The reward and success rate
progression of the SAC policy are illustrated in Fig. 5, we ran
the same settings with 3 different seeds and plot the mean and
standard deviation to see the consistency of the training. The
policy demonstrated effective training, converging to 100%
success rate and −50 reward after roughly 200K steps. The
training is stable as the standard deviation for reward is quite
small while success rate has a bigger variation due to the
discrete nature of thresholding and infeasible randomization.

2) Imitation Learning: Our training efforts resulted in a
successful imitation learning (IL) policy, achieving data over-
fitting within 1000 iterations. However, upon deployment, the
model’s performance was subpar. The robot arm exhibited
an initial drastic movement towards the target followed by
a sudden halt. Further analysis revealed that the model was
predicting excessively large time steps despite the data being
recorded at 250 Hz. To address this issue, we down-sampled
the training data to 20 Hz and retrained the model for 1000
iterations. This time, our robot arm behavior aligned with
expectations, faithfully replicating the expert demonstration.

3) Unified Behaviors: Our results for both RL and IL pro-
vide compelling evidence on the critical role of the observer’s
viewpoint in the legibility of robotic trajectories (Fig. 6).
When observed from a side view, it is necessary for the robot
to execute a trajectory that ascends vertically to circumvent
a distraction object colored in red. This path ensures the
trajectory remains clear and purposeful. Conversely, when
the same policy is applied from a top view, the trajectory’s

legibility diminishes; the robot appears to traverse directly
towards the distraction, following a straight path. To maintain
legibility from this viewpoint, the robot must instead navigate
around the object on the plane of the table.

This disparity illustrates that even under identical con-
ditions, the perception of a trajectory as legible can vary
dramatically depending on the viewer’s perspective. These
findings underscore the importance of viewpoint conditioning
in designing trajectories that are universally understood across
different observational perspectives. Moreover, our model can
be easily generalized to continuous viewpoint characterization
with the use of perspective projections.

While RL is able to search for the best behaviors given a
carefully engineered reward, IM implicitly learns the hard-to-
specified objectives but being limited to the dataset diversity.
Our paper serves as a foundational framework for learning-
based legible motion planning where both methods are exten-
sively evaluated. Our architecture is universal and can be used
with optimization-based techniques as well.

B. Human Evaluation Results

As legibility measure the ability to produce motion se-
quences that are obvious to human, it is hard to create a
metric that accurately follows the human preference. Hence,
it is imperative to conduct human evaluation in addition to the
metrics we set for our RL and IL training pipelines. We created
two videos each for expert, RL and IL policies. Additionally
we intentionally created an ablated scenario with RL (called
RL-Mix in Fig. 7) to assess the importance of viewpoint
conditioning. The model in RL-Mix is conditioned with side
view for the top view video and is conditioned with top for
the side view video. In total, 10 people are asked to watch
all the 8 videos (4 are shown in Fig. 6). They were asked
to pause the video as soon as they think they recognize the
robot intention and then report the object they think the robot
is going for. We constructed a score system to balance these
factors as follows:

score =
tvideo − tpause

tvideo
× check(guess) (3)

check(guess) =

{
1 if guess correct
0 if guess wrong

(4)

Comparing the scores in Fig. 7, the IL agent achieved
almost the same average score as expert demonstration with
a better performance in top view. As for RL, it achieved
a roughly 15% higher score compared to the IL agent and
expert. We speculate that it’s due to the faster motion in RL
videos that generally makes recognizing the robot intention
easier. Besides, RL agent tries to maximize the legibility
reward by interacting with the environment, hence being more
effective. On the other hand, for RL-Mix, top view video
has a expected poor result of 0.281 as the robot reaching the
goal but not avoiding the distraction in the top view. This is
ambiguous to viewers, not only causing longer pause times
but also leading to some incorrect answers. However, side



(a) Side view of imitation learning legible trajectory.

(b) Top view of imitation learning legible trajectory.

(c) Side view of reinforcement learning trajectory.

(d) Top view of reinforcement learning trajectory.

Fig. 6: Snapshots of viewpoint-conditioned learned policy for imitation learning and reinforcement learning. Our policy is able to execute legible motion plans
for two views, side view (a) and (c), and top view (b) and (d).

Fig. 7: Human-based evaluation results on the recorded legible motions. While
our IL-trained agent performed competitively well compared to the expert
demonstrations, our RL-trained one outperformed the others by 15%. Without
proper viewpoint conditioning, RL-trained agent obtained a low score.

view in RL-Mix surprising still performed comparably well to
the normal settings. This means that the robot actually went
around the distraction both from the top view and the side
view at the same time. This suggests that there are still rooms
for improvement for the RL legibility algorithm, but overall,
the human evaluation demonstrates the ability of RL and IL
agents to produce compelling legible motion plans that are
aligned with human preferences.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we first introduce a universal planning archi-
tecture for generating legible motions, realized and evaluated
using two learning-based approaches. While the reinforcement
learning (RL) agent attempts to maximize a legibility reward
by interacting with the simulated environment, the imitation
learning (IL) agent performs supervised learning on legible
expert demonstrations collected in real world. Furthermore,
we propose a novel planning model that incorporates human’s
viewpoint to produce adaptive motion plans. We demonstrated
the proposed legibility frameworks in goal-reaching manipu-
lation tasks on an xArm6 robot. Human evaluations show that
our IL-trained agent can perform comparatively well while
our RL-trained agent outperforms the expert baseline by 15%.
Moreover, viewpoint conditioning is shown to be essential in
achieving robot legible motion.

Future work will evaluate the proposed frameworks in more
complex tasks including multiple dynamic objects and com-
pare with more diverse baselines. We also plan to bridge the
gap between simulation and real world for RL and incorporate
richer sensory inputs such as perception to generate more
adaptive legible motions and enable full shared autonomy.
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