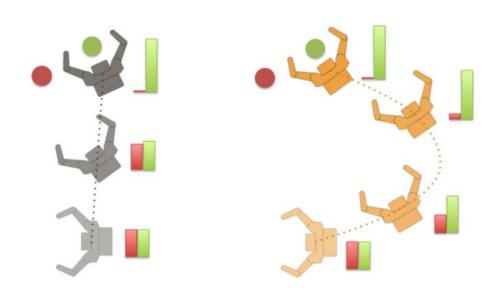
Viewpoint-Conditioned Legible Motion Planning with Imitation and Reinforcement Learning

Bernie Chiu, Khai Nguyen, Prakrit Tyagi, Saurav Kambil, Inseung Kang Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

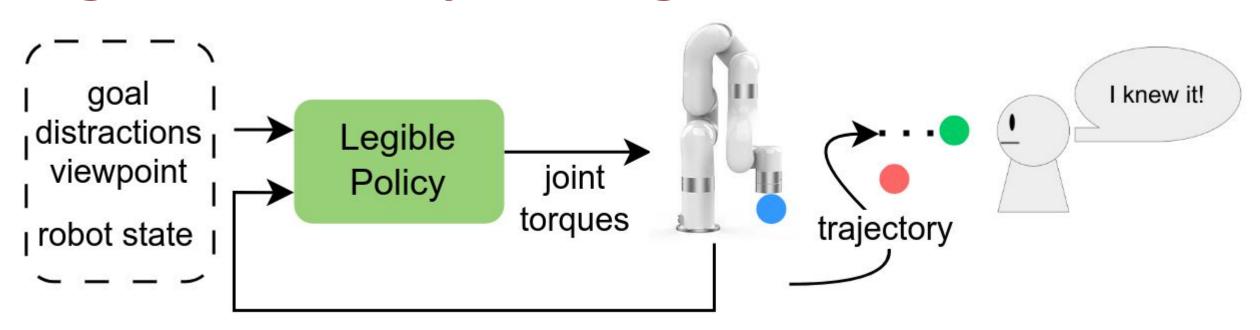
Legible motion planning: the key to effective human-robot collaboration

Legible motion is crucial for efficiency and trust in assistive robotics and cooperative tasks

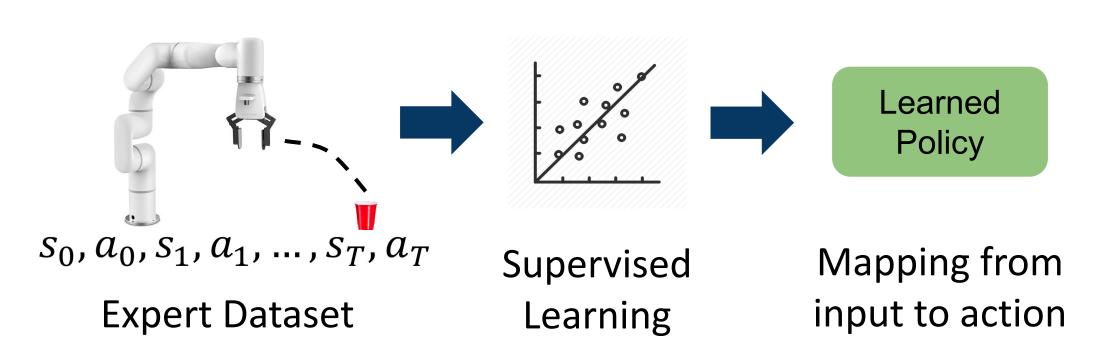
Robots that behave in an understandable manner boost human experience



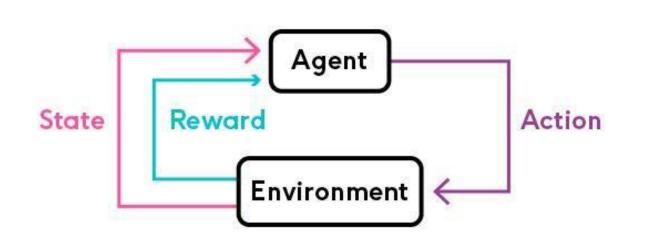
A unified system for learning-based legible motion planning



IL performs supervised learning on legible expert demonstrations



RL maximizes a legibility reward by interacting with the environment



Algorithm:

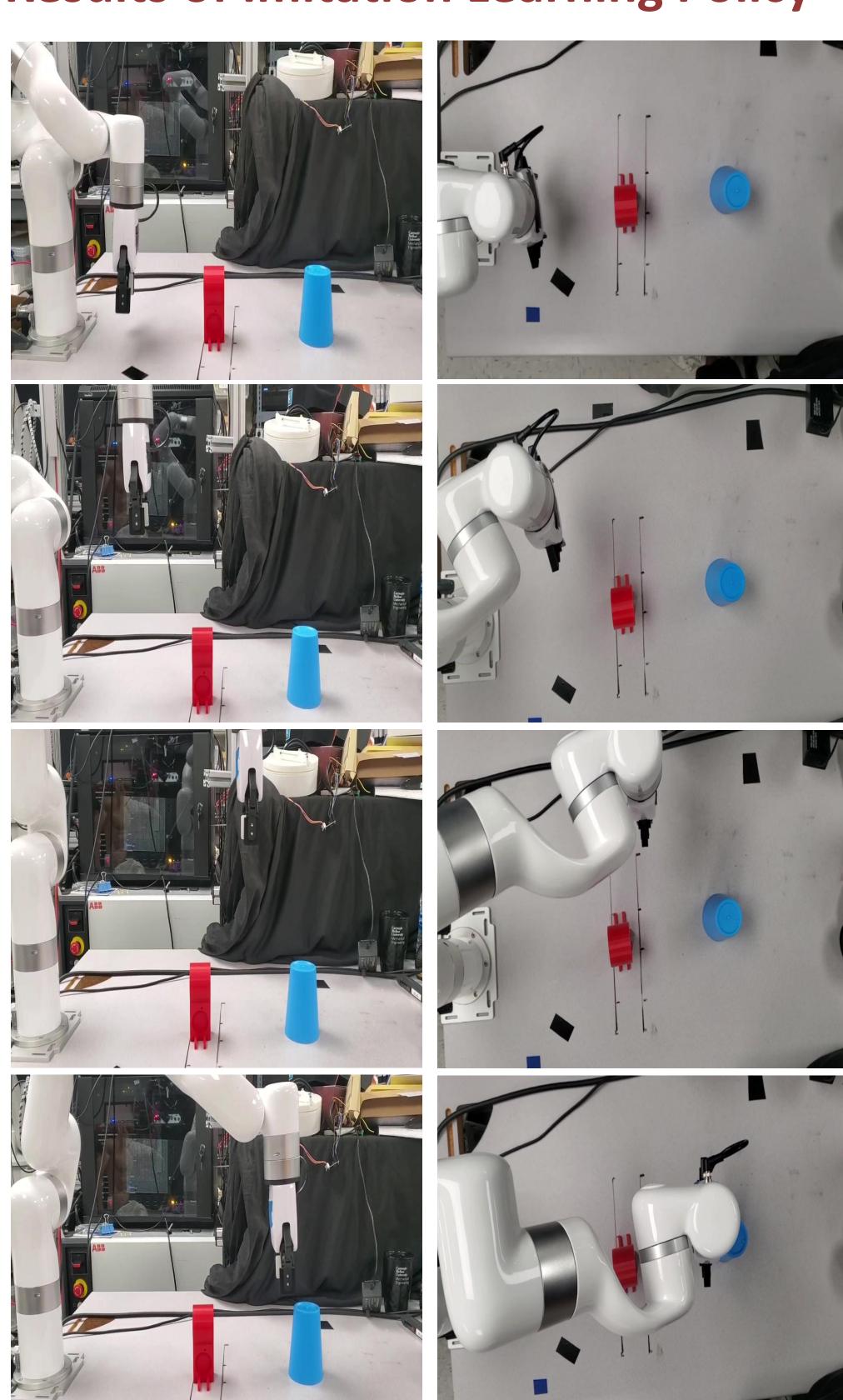
soft actor-critic + hindsight exp. replay

Reward:

$$r = -\alpha_1 d_{\text{goal}} + \alpha_2 g(d_{\text{distract}}, \beta_1) - \alpha_3 e_{\text{rot}} + \alpha_4 g(z, \beta_2)$$

 $g(x, y) = -1 \text{ if } x \leq y, \text{ otherwise } 0$

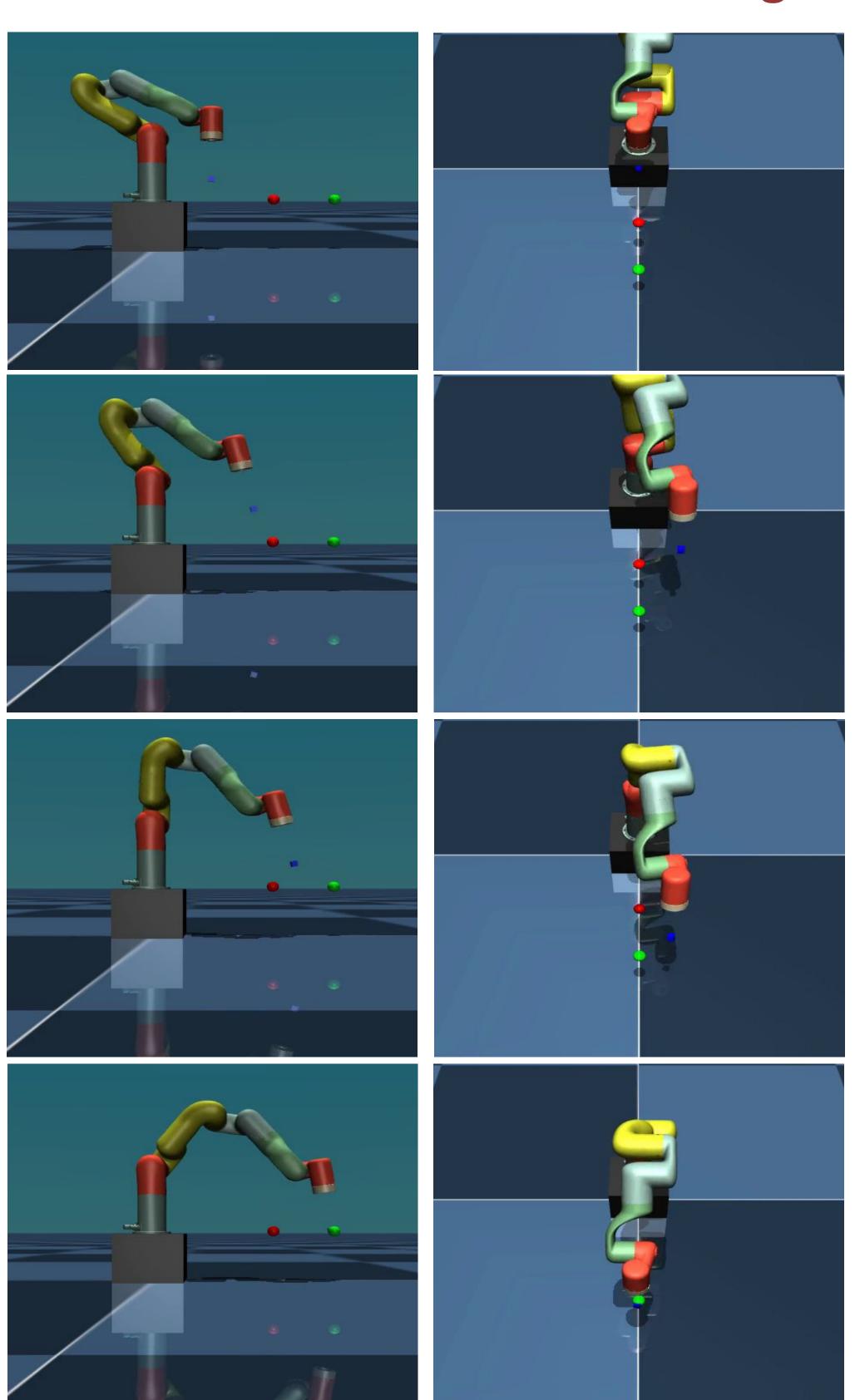
Results of Imitation Learning Policy



We asked our friends for evaluation

Expert	0.65	$\operatorname{correct} \cdot (1 - \frac{t_{pause}}{t_{total}})$
IM policy	0.64	
RL policy	0.75	

Results of Reinforcement Learning Policy



Conclusions and Future Work

- Accomplished goal-oriented tasks with legible motion plans considering observer's viewpoint
- Evaluated two learning-based methods with humans and compared with expert baseline
- Future Work: Integrate multi-modal sensory inputs for adaptive and dynamic legible motion