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I. BACKGROUND

Visual Lidar Odometry and mapping (VLOAM) [1] is a
state-of-the-art technique used in robotics for localizing and
mapping an environment and a robot in real-time. It combines
the benefits of both visual and lidar sensors to accurately
estimate the robot’s position and map its surroundings.

VLOAM works by using the visual sensor to extract visual
features at a high frequency (60 Hz) from the environment,
such as corners, edges, and textures. The lidar sensor, running
at a low frequency (1 Hz) on the other hand, generates a
3D point cloud of the surrounding environment and helps
in correcting the visual odometry drift. By fusing the visual
features and lidar data, VLOAM is able to estimate the robot’s
position and create a high-resolution map of the environment.

A. Motivation
By studying a state-of-the-art odometry method that fuses

multiple sensors, we wished to enhance our understanding
in this field. Initially, our scope of the project was to re-
implement the original paper. However, following the feedback
received, we decided it was more worthwhile to reuse existing
code to reproduce a baseline, upon which we would attempt
to improve the current method.

B. Challenges
One of the main challenges faced by VLOAM is the

lack of robustness to illumination changes, occlusions, and
low-texture regions, which can cause the visual data to be
unreliable. Furthermore, cost of the sensor is another challenge
that we would like to address by comparing performance of
VLOAM with RGBD based odometry method.

C. Existing Approaches
Existing approaches to VLOAM include both feature-based

and direct methods. Feature-based methods rely on detecting
and tracking distinctive features in the environment, such as
corners and edges, to estimate the robot’s motion and build a
map of the environment. VINS-Mono algorithm, which uses
a monocular camera and an IMU to estimate the robot’s pose
and map the environment is a feature based algorithm. Direct
methods, on the other hand, directly estimate the motion and
map from the raw sensor data without explicitly detecting
features. Direct methods include the LSD-SLAM algorithm,
which uses a monocular camera to directly estimate the motion
and map. Below are explanation of some of these approaches:

1) LOAM: LOAM (Lidar Odometry and Mapping) [2] is a
popular method for estimating the pose of a mobile robot using
a 3D lidar sensor. It was first introduced by Zhang and Singh
in 2014 and has since been widely used in robotics research.
One of the main advantages of LOAM is its computational
efficiency, which enables it to run in real-time on a low-cost
embedded system.

Fig. 1: Point cloud visualization

LOAM is based on the iterative closest point (ICP) algo-
rithm, which is used to match consecutive lidar scans and
estimate the relative motion between them. However, LOAM
also incorporates several enhancements to improve its accuracy
and robustness. For example, it uses a front-end module to
extract feature points from the raw lidar data and a back-
end module to optimize the estimated trajectory based on
constraints from the odometry.

LOAM has been evaluated on various datasets and com-
pared to other state-of-the-art methods. In general, it has been
shown to achieve high accuracy and robustness, even in chal-
lenging environments with dynamic objects and occlusions.
However, there are also some limitations to LOAM, such as
its sensitivity to sensor noise and its reliance on accurate
initial guess for the motion estimation. Despite its limitations,
LOAM remains a popular choice for lidar-based odometry and
mapping in robotics research. Many researchers have proposed
extensions and variations of the original LOAM algorithm
to further improve its performance and address some of its
limitations.

2) VLOAM: The paper presents a method for combining
visual odometry and Lidar odometry in a fundamental and
first principle method to improve accuracy and speed while
reducing drift [1]. The method shows improvements in per-
formance over the state of the art, particularly in robustness
to aggressive motion and temporary lack of visual features.

The proposed online method starts with visual odometry



Fig. 2: Block diagram of the odometry and mapping software
system.

to estimate the ego-motion (Camera kinematics) at a high
frequency and to register point clouds from a scanning Lidar
at low frequency. Then the motion estimates from the visual
odometry are refined by matching point clouds between con-
secutive sweeps of lidar and finally point clouds are registered
on the map.

The authors evaluate their approach using several datasets
as well as benchmark dataset from KITTI and compare it
to other state-of-the-art SLAM methods. The results show
that their algorithm achieves low-drift, robustness to noise
and occlusions, and fast processing time. The authors also
demonstrate the practicality of their approach by deploying
it on a real-world robotic platform and showing successful
mapping and localization in challenging environments.

3) ORB-SLAM: ORB-SLAM is a reliable and comprehen-
sive solution for monocular SLAM.It employs a policy to
create and remove key frames, allowing for flexible map ex-
pansion, particularly useful in poorly conditioned exploration
trajectories [3]. ORB-SLAM is capable of recognizing places
from severe viewpoint changes, and its ORB features are both
fast to extract and match, enabling real-time and accurate
tracking and mapping without the need for multi-threading
or GPU acceleration. Overall,ORB-SLAM provides interesting
long-term mapping results by storing a history of different
visual appearances.

4) ORB-SLAM2: ORB-SLAM2 [4] is a stereo SLAM sys-
tem that was first released in 2016. It builds on the ORB-
SLAM1 algorithm, but it uses a more robust feature detector
and tracker, and it also uses a bundle adjustment algorithm
to improve the accuracy of the estimated pose. ORB-SLAM2
is able to run in real-time on a standard laptop, and it has
been shown to be effective in a variety of indoor and outdoor
environments.

5) ORB-SLAM3: ORB-SLAM3 [5] is a visual-inertial
SLAM system that was first released in 2018. It builds
on the ORB-SLAM2 algorithm, but it also uses an inertial
measurement unit (IMU) to provide additional information
about the camera pose. This allows ORB-SLAM3 to track the
camera pose even when there are no visual features available,
such as when the camera is in a dark environment. ORB-
SLAM3 is able to run in real-time on a standard laptop, and
it has been shown to be effective in a variety of indoor and
outdoor environments.

6) Superpoint: One notable paper on feature detection
is SuperPoint: Self-Supervised Interest Point Detection and
Description [6]. The paper presents a self-supervised approach
to training the SuperPoint network, which allows it to learn to

extract features without the need for labeled data. The authors
also show that SuperPoint outperforms other feature extraction
methods such as ORB and SIFT in terms of accuracy, speed
and number of features detected.

7) SuperGlue: Another paper that builds on the Super-
Point algorithm is SuperGlue: Learning Feature Matching
with Graph Neural Networks [7] . In this paper, the authors
introduce SuperGlue, a graph neural network-based method for
feature matching that uses the SuperPoint algorithm for feature
extraction. The authors show that SuperGlue outperforms other
feature matching methods such as SIFT and RANSAC in terms
of accuracy and speed, especially in challenging scenarios such
as low-texture regions and dynamic environments.

Fig. 3: Feature Correspondences

D. Dataset

We used KITTI dataset to evaluate our implementation. The
KITTI dataset is a widely used dataset for autonomous driving
research. It contains data from different sensors such as stereo
cameras, laser scanners, and GPS/IMU localization systems.
Specifically we used KITTI-Odometry dataset [8].

The KITTI-Odometry dataset contains 22 sequences, where
11 sequences (00-10) come together with ground truth trajecto-
ries for training and 11 sequences (11-21) without ground truth
for evaluation. Each of the sequences have different trajectories
in shape and length. Each sequence contains high resolution
RGB and Grayscale stereo images, as well as Velodyne laser
data. This data was recorded in the city of Karlsruhe, Germany
using a car fitted with sensors.

II. PROPOSAL

To address the challenges mentioned, we would integrate
deep-learning based methods: Superpoint model for extracting
keypoints from the images and Superglue for matching these
features. We would then compare our method with existing
method to compare these methods. We will also follow up
by comparing ORB-SLAM methods with our method/current
VLOAM method to understand the justification of costs.

Fig. 4: Block Diagram of Visual Odometry in Super VLOAM



III. METHODOLOGY

In our proposed approach, we plan to replace the classical
feature extraction and matching algorithms in VLOAM with
SuperPoint and SuperGlue deep learning models respectively.
We will integrate the SuperPoint and SuperGlue networks into
the VLOAM pipeline, which we call Super-VLOAM.

To evaluate the performance of our proposed approach, we
plan to conduct experiments using synthetic and if possible
real-world datasets. We will compare the accuracy and effi-
ciency of our Super-VLOAM model with the current VLOAM
implementation. We expect that our proposed approach will
improve the accuracy and robustness of VLOAM, especially in
challenging scenarios such as low-texture regions and dynamic
motion of the vehicle.

A. Work Done and Experimentation

• We have deeply understood VLOAM for getting a better
perspective on the lidar and visual odometry algorithms.
To save us time and effort we referred to a few github
repositories. Using these repositories we visualized the
rqt graph to understand the topics needed, dependencies,
and frameworks needed and how the roslaunch files are
written. We have used RVIZ in ROS to visualize the
baseline results.

• We integrated the Superpoint and Superglue networks
into VLOAM. We used pre-trained models trained using
PyTorch, and converted them to the intermediate ONNX
format for integration into our VLOAM (C++) code. We
were able to successfully run inferences on the models
on the CPU, but we are currently having trouble running
them on the GPU.

• We tested Super-VLOAM on KITTI odometry sequences
04 (simple) and 05 (more complex). On the simpler
sequence, the performance was comparable to existing
VLOAM, which uses ShiTomasi features and ORB de-
scriptor matching in the visual odometry block. However,
on the harder sequence, we had an underwhelming per-
formance. On each frame, the processing was about 100x
slower than the classical methods. The reported RMSE
is in three digits for translational errors.
We attribute this to the model running on the CPU, which
takes considerable time to process the frames. As a result,
multiple frames in the sequence are skipped. The skipped
frames contain more features to match, which in turn
worsens the performance.
We are currently working on optimizing the code to
improve the performance of Super-VLOAM on the GPU.
We believe that this will allow us to achieve comparable
performance to existing VLOAM on both simple and
complex sequences.

• We have reproduced results with existing ORB-SLAM2
model for the purpose of comparing Visual Odometry
part of Super-VLOAM with it.

IV. RESULTS

In this section we present results for sequence 04 and 05
of KITTI odometry dataset. In the table I we have summa-
rized performance parameters of various implementation for
comparisions. Translational error is in meters and rotational
errors is in radians. In the next section we will present results
in detailed for sequence 04.

A. Sequence 04

(a) Sequence 4 path with ShiTomasi fea-
ture detector

(b) Sequence 4 path with Orb feature de-
tector

(c) Sequence 4 path with Superpoint and
SuperGlue

Fig. 5: Sequence 04 3D path comparison



Seq Sensor Error VLOAM ShiTomasi VLOAM ORB-SLAM2 Super VLOAM

04

Visual terr 4.550 5.244 0.857% 4.555
rerr 0.024 0.040 0.130% 0.044

Lidar terr 1.863 1.585 1.485
rerr 0.015 0.017 0.015

Mixed terr 0.605 0.399 0.540
rerr 0.004 0.004 0.004

05

Visual terr 26.652 68.145 9.116% 98.786
rerr 0.092 0.264 1.060% 0.044

Lidar terr 27.562 64.742 101.440
rerr 0.105 0.256 0.441

Mixed terr 25.247 66.357 102.010
rerr 0.086 0.262 0.442

TABLE I: Table encapsulating performance parameters of various implementations

Fig. 6: Error graph for ShiTomasi feature

Fig. 7: Error graph for orb feature

V. DISCUSSIONS

In this study, we proposed Super-VLOAM, a deep learning-
based approach that improves the performance of Visual-
LiDAR Odometry and Mapping by replacing classical feature
extraction and matching algorithms with SuperPoint and Su-
perGlue models. Our experiments were aimed at demonstrat-
ing that Super-VLOAM achieves higher accuracy and robust-
ness compared to the baseline VLOAM method, especially in
challenging scenarios such as low-texture regions and dynamic
motion.

We observed that Super-VLOAM has a high processing time
due to the complex computations involved in deep learning
models, which can be a limiting factor for real-time appli-
cations. The high processing time can prevent the extraction
of features from every frame, resulting in incomplete feature
maps, and a decrease in accuracy.

As future work, one potential solution to this limitation is to

Fig. 8: Error graph for Superpoint and Superglue feature

run Super-VLOAM on GPUs to decrease the processing time.
This could significantly improve the performance of Super-
VLOAM, allowing for real-time applications. Additionally, we
could explore the use of other deep learning-based models
that can reduce the computation time without compromising
accuracy.

Furthermore, we evaluated Super-VLOAM on a limited
number of sequences, including the KITTI dataset, and addi-
tional evaluation on more diverse datasets can provide a more
comprehensive assessment of its performance. Future work can
also explore the use of transfer learning techniques to fine-
tune SuperPoint and SuperGlue models on different datasets
and improve their generalization capability.

In conclusion, Super-VLOAM shows promise as a deep
learning-based approach for Visual-LiDAR Odometry and
Mapping. While it has a high processing time, future work can
explore ways to optimize its computation time and evaluate
its performance on more diverse datasets to further assess its
potential for real-world applications.



Fig. 9: Predicted Trajectory for VLOAM: Red path: Visual Odometry Yellow path: Lidar Odometry Green path: Mixed
Odometry

Fig. 10: Predicted Trajectory for Super VLOAM: Red path: Visual Odometry Yellow path: Lidar Odometry Green path: Mixed
Odometr
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